

SWPC SWFO User Readiness

Safeguarding Society with Actionable Space Weather Information Mon, 15 Apr 2024

Outline

Background

GOES-U

SWFO-L1

Conclusion

Team

- Lead
 - Jeff Johnson
- Developers
 - Nathan Miles
 - Martin Aubrey
 - Michael Burek
 - Richard Sheppard
 - Mark Nakasone
- Scientists
 - George Millward
 - Lois Landwer
- Other Contributors
 - Tamara Bledsoe
 - Mark Miesch
 - Tibor Durgonics
 - o Ratina Dodani
 - Vic Pizzo

SWPC Mission and SWFO

Models, Applications, and Displays associated with coronagraph images and real-time solar wind data

Models

WSA-Enlil
OVATION (Aurora)
Geospace
WAM-IPE
REFM
CTIPe

Geoelectric

Magnetopause

crossing

Forecaster tools

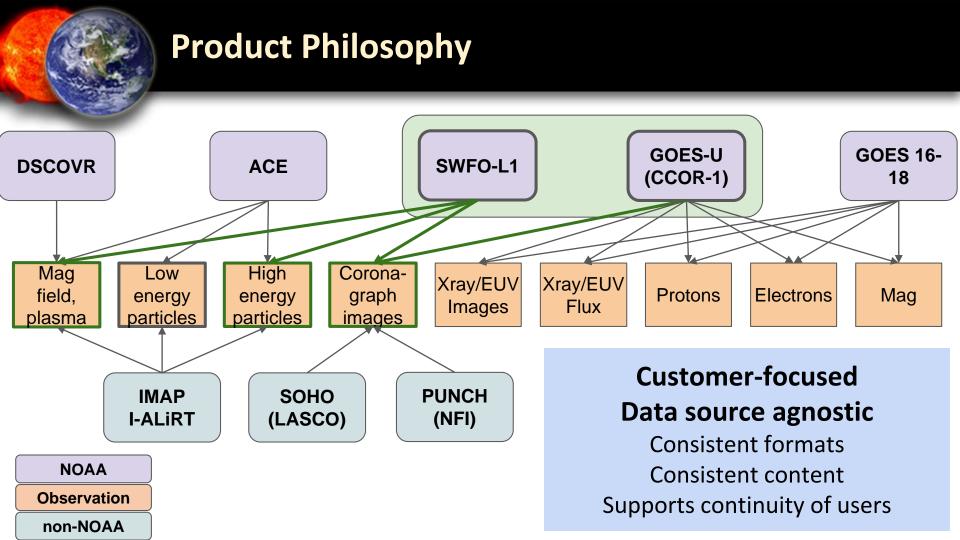
CME Analysis Tool (CAT)
CME Naming Tool (CMENT)
Near-real-time movie loops (24hr, 7-day, 27-day)

Dashboards

Aviation, Electric Power,
Emergency Management,
Satellites, GPS, Radio
Communications, Space Weather
Enthusiasts

Web Displays

Coronagraph images and movies
Real-Time Solar Wind


National Critical Notifications

Power Grid (NERC Hotline) FEMA

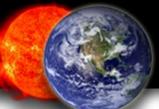
Forecasts, Reports, Watches, and Warnings

Geomagnetic Storm Watches
Aviation Advisories
Forecast Discussion
Weekly Highlights and 27-day
Forecast
Solar and Geophysical Event
Reports

SWPC Data Service

Continuity and Change

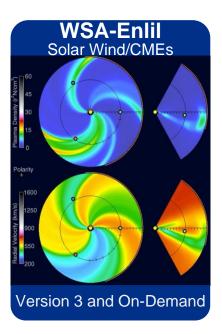
Measurement	Today	SWFO/GOES-U	
Coronal Images	SOHO LASCO C2 & C3 Pass through from NASA/GSFC, 12 min cadence	GOES-U CCOR-1 SWFO-L1 CCOR-2 2048x1920 pix; 15 min cadence; jpeg files; 1, 7, 27 day animations, FITS	
Thermal Plasma Ion Velocity, Density, and Temperature	ACE SWEPAM DSCOVR FC 1 min cadence, ASCII, JSON	SWFO-L1 SWiPS 1 min cadence, JSON, Dynamic displays	
Suprathermal Ion Differential Flux	ACE EPAM 5 min cadence, ASCII, JSON	SWFO-L1 STIS 1 min cadence, JSON, Dynamic displays	
Vector Magnetic Field	ACE DSCOVR MAG 1 min cadence, ASCII, JSON	SWFO-L1 MAG; 1 sec cadence, 1 min cadence, JSON, Dynamic displays	


Level 3 Data Products

- CCOR
 - o Images at 15 minute cadence
 - Incorporated into animations
- MAG
 - o 1 sec cadence
 - O 1 min cadence synced with UTC
- SWiPS
 - o 1 min cadence synced with UTC
- STIS
 - o 1 min cadence synced with UTC
 - o Selected Energy channels
 - ACE/EPAM (8/4 ion/electron channels) for data continuity

Level 3 data products are derived environmental variables that have been resampled. They are the primary products used by forecasters and customers

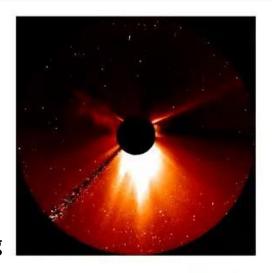
From full resolution right now extending back to ACE mission

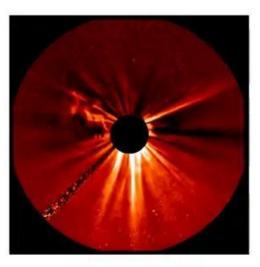

2hr/6h/1d/3d/7d/30d/54d/1y/5y/30y



GOES-U Launch NET June 25, 2024

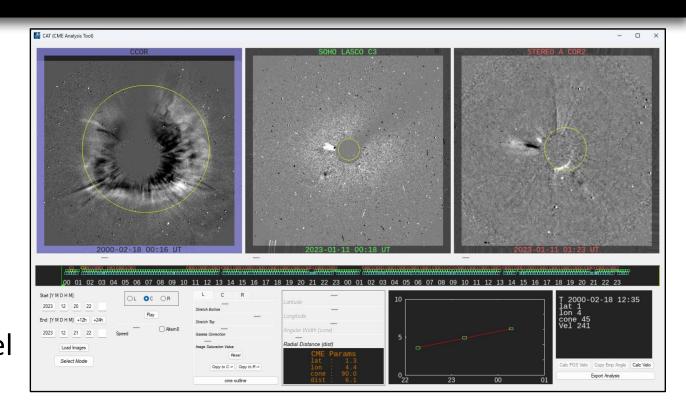
- Software
 - o Launch-ready release 3.0 Dec. 20, 2023
 - CME Analysis Tool (CAT) integration
- Testing
 - System integration tests January March 2024
 - Public web display
- Training
 - Forecaster familiarization and training briefings
- Future work
 - UKMO pyCAT collaboration
 - Investigating JHelioviewer support





CCOR Level 3 Products

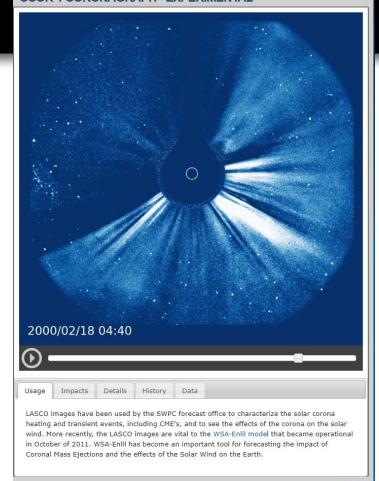
- High-quality images for use with movies, applications, forecasts, alerts
- Downsample 50% for use by SWPC forecasters and stakeholders.
 - O 1024 x 960 for optimal viewing on computer screens
 - O Movies 1 day, 7 day, 27 day (no decimation, 96 frames/day)



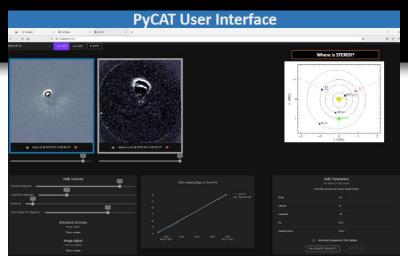
Level 3 processing removes noise and enhances feature compared to LASCO C3

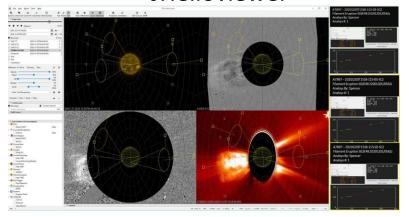
CME Analysis Tool (CAT)

- Measurements:
 - o Speed
 - Angular extent
 - o Plane of sky (POS) angle
- Essential input for WSA-Enlil solar wind model


Public Web Display

- Purpose: Situational Awareness
- Data flow to website and animations demonstrated
- RT JPEG images and MPEG movie files provided for download

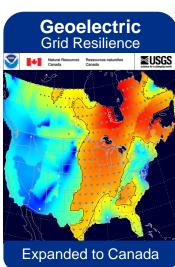

CCOR-1 CORONAGRAPH - EXPERIMENTAL



Future Work

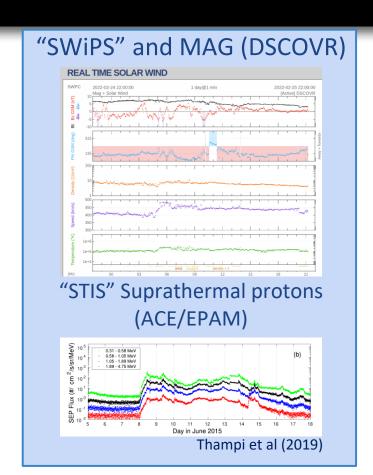
- pyCAT
 - Joint effort with UKMO
 - Migrate CAT from IDL to Python
 - Extend capabilities
- JHelioviewer
 - Provide compatibility with this workhorse application
 - Integrate with other solar image data
 - o JPEG2000 file support

JHelioviewer



SWFO-L1 Launch NET April 2025

- System
 - System Integration Review January 23-24
- Software
 - Awaiting some algorithm inputs
 - Launch Ready Release 4.0September 2024
 - Timeline Viewer for data display
- Future Work
 - Artemis Support
 - Predictive Geoelectric Model



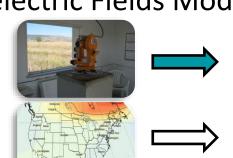
SWiPS and MAG

- SWiPS Thermal Plasma
 - Ion velocity, density, and temperature
- MAG
 - Vector Magnetic Field
- STIS
 - Suprathermal Ion Differential Flux
 - o 8/4 ion/electron channels
 - Data continuity with ACE/EPAM

Applications

- SWiPS & MAG
 - Used for CME Arrival
 - Arrival time from speed
 - Intensity estimate from Bz, density, speed
 - Drives Geospace model
- STIS
 - Provides situational awareness, alerts, and advanced warnings of approaching CMEs

New Display and data services based on HAPI and KNMI timeline viewer




Future Work

- Dashboard for NASA SRAG Artemis support
 - Coronagraph (LASCO; CCOR)
 - RTSW (ACE/DSCOVR; SWiPS & MAG)
 - Suprathermal Ions (ACE EPAM; STIS)
 - Target readiness L-1 year for testing and training
- Predictive Regional Geoelectric Fields Model

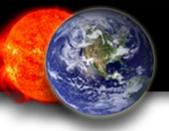
Real-Time
Ground-Based Magnetometer Data

Geospace <u>Predicted</u> Ground-Based Magnetic Field Data

Geoelectric Field Map

Access

- SWPC data products served to the public via SWPC's website:
 - o https://www.swpc.noaa.gov/products
- Visualization tools are provided; data files can be downloaded:
 - o https://www.swpc.noaa.gov/products/real-time-solar-wind
- Web service provided for use by automated systems:
 - o https://www.swpc.noaa.gov/content/data-access
 - o https://services.swpc.noaa.gov (base services URL)
- Archive is maintained by NCEI



Conclusion

SWPC's product-centric,
 source-agnostic approach serves
 RTSW and Coronagraph data
 through a wide variety of products
 and services to support our customers

- GOES-U and CCOR are ready for launch, post-launch testing, and will be ready for operations
- SWFO-L1 efforts are proceeding on pace and will ultimately provide new predictive capabilities and support for Artemis

Backup Slides

Quality Management System (QMS) Certification

SWPC's newly implemented QMS recommended for ISO 9001:2015 certification!

Certification Audit

Zero non-conformities:

A remarkable accomplishment for a newly implemented QMS.

Audit report - highly effective processes:

Customer Focus

Risk Management

Action Internal Audit System

Review

Leadership

Corrective

Mgmt

Government and Military Certification Systems, Inc.

Finalizing The Assessment

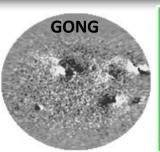
ISO 9001 & The 7 Management Principles

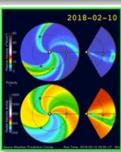
Notes to Auditor: Complete this portion during Auditor Caucus time prior to closing meeting. Any "Not Effective" response should be followed by placing a note in the "Notes" section below. This portion will be used as one measures of quality management system improvement between surveillance/recertification audits.

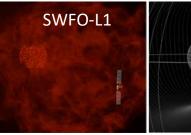
Complete for ISO 9001: 2015 Assessments

☐ Highly Effective ☐ Effective But Needs Improvement ☐ Not Effective
☐ Highly Effective ☐ Effective ☐ Effective But Needs Improvement ☐ Not Effective
☐ Highly Effective ☐ Effective But Needs Improvement ☐ Not Effective
☐ Highly Effective ☐ Effective But Needs Improvement ☐ Not Effective
☐ Highly Effective ☐ Effective ☐ Effective But Needs Improvement ☐ Not Effective
☐ Highly Effective ☐ Effective ☐ Effective But Needs Improvement ☐ Not Effective
☐ Highly Effective ☐ Effective ☐ Effective But Needs Improvement ☐ Not Effective
☐ Highly Effective ☐ Effective ☐ Effective But Needs

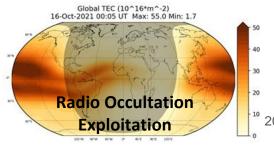
Management System Overall Effectiveness Over Three Years:


Stage 2 Audit


		_	_
☐ Highly Effective	□ Effective □	☐ Effective But Needs Improvement	Not Effect

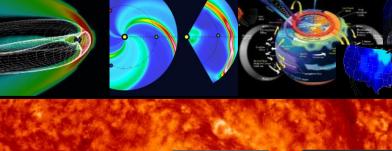



Observations Improvements


- Global Oscillation Network Group (GONG)
 - Operational Sustainment and Resiliency
 - o GONG Replacement
- Assessment of commercial magnetometers
 - CRADA w/ Computational Physics, Inc.
- Radio Occultation Exploitation (Spire)
- GOES-R Integration GOES 17 & 18
- Space Weather Follow-On (SWFO)
- NESDIS Space Weather Next Program

Near-Real-Time Files

- L3 data product files will be continuously updated for use by forecasters to monitor real-time data.
 - Accessible by forecasters within SWPC via https protocol.
 - Pushed to the <u>swpc.noaa.gov</u> for access by external users.
- MAG/SWiPS/STIS
 - Time series data will be in JavaScript Object Notation (JSON) files extending the legacy DSCOVR/ACE paradigm.
 - HAPI, KNMI Timeline Viewer
- Near-real-time files are 'renderings' of L3 data
 - Only the L3 data itself is archived



Space Weather-Ready Nation

A Nation Ready, Responsive, and Resilient to Space Weather

Improved understanding with new modeling and R2O2R capabilities

Partnerships — the entire Space Weather Enterprise working together

SECTOR NGOS
SECTOR

NOTE

ANTICHAL

GOVERNMENT

Better information connected to key stakeholders for better decisions - enhance National resilience